
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).
Google Scholar
Jones, J. R., Simon, T., Lones, L. & Herzog, E. D. SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. J. Neurosci. 38, 7986–7995 (2018).
Google Scholar
de Vries, M. J., Treep, J. A., de Pauw, E. S. & Meijer, J. H. The effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids. Brain Res. 642, 206–212 (1994).
Google Scholar
Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713 (1994).
Google Scholar
Mintz, E. M., Marvel, C. L., Gillespie, C. F., Price, K. M. & Albers, H. E. Activation of NMDA Receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19, 5124–5130 (1999).
Google Scholar
Contreras, E., Nobleman, A. P., Robinson, P. R. & Schmidt, T. M. Melanopsin phototransduction: beyond canonical cascades. J. Exp. Biol. 224, jeb226522 (2021).
Google Scholar
Milner, E. S. & Do, M. T. H. A population representation of absolute light intensity in the mammalian retina. Cell 171, 865–876.e816 (2017).
Google Scholar
Do, M. T. H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104, 205–226 (2019).
Google Scholar
Chen, S.-K., Badea, T. & Hattar, S. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92–95 (2011).
Google Scholar
Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. Overview of circadian rhythms. Alcohol Res. Health 25, 85 (2001).
Google Scholar
Johnson, C. H. Circadian Clocks from Cell to Human (eds T. Hiroshige, T. & Honma, K.) 209–249 (Hokkaido Univ. Press, 1992).
COURSEY, P. J. D. Daily light sensitivity rhythm in a rodent. Science 131, 33–35 (1960).
Google Scholar
Kornhauser, J. M., Ginty, D. D., Greenberg, M. E., Mayo, K. E. & Takahashi, J. S. Light entrainment and activation of signal transduction pathways in the SCN. Prog. Brain Res. 111, 133–146 (1996).
Google Scholar
Shirakawa, T. & Moore, R. Y. Glutamate shifts the phase of the circadian neuronal firing rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci. Lett. 178, 47–50 (1994).
Google Scholar
Asai, M. et al. Visualization of mPer1 transcription in vitro: NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. Curr. Biol. 11, 1524–1527 (2001).
Google Scholar
Jones, J. R., Tackenberg, M. C. & McMahon, D. G. Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat. Neurosci. 18, 373–375 (2015).
Google Scholar
Kim, S. & McMahon, D. G. Light sets the brain’s daily clock by regional quickening and slowing of the molecular clockworks at dawn and dusk. eLife 10, e70137 (2021).
Google Scholar
Rusak, B. & Groos, G. Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science 215, 1407–1409 (1982).
Google Scholar
Shibata, S. & Moore, R. Y. Neuropeptide Y and optic chiasm stimulation of affect suprachiasmatic nucleus circadian function in vitro. Brain Res. 615, 95–100 (1993).
Google Scholar
Shibata, S., Watanabe, A., Hamada, T., Ono, M. & Watanabe, S. N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am. J. Physiol. 267, R360–R364 (1994).
Google Scholar
Sladek, M. & Sumova, A. Modulation of NMDA-mediated clock resetting in the suprachiasmatic nuclei of mPer2Luc mouse by endocannabinoids. Front. Physiol. 10, 361 (2019).
Google Scholar
Gillette, M. U. & Mitchell, J. W. Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res. 309, 99–107 (2002).
Google Scholar
Yan, L., Foley, N. C., Bobula, J. M., Kriegsfeld, L. J. & Silver, R. Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J. Neurosci. 25, 9017–9026 (2005).
Google Scholar
Liu, A. et al. Encoding of environmental illumination by primate melanopsin neurons. Science 379, 376–381 (2023).
Google Scholar
Atasoy, D. & Sternson, S. M. Chemogenetic tools for causal cellular and neuronal biology. Physiol. Rev. 98, 391–418 (2018).
Google Scholar
van Diepen, H. C. et al. Distinct contribution of cone photoreceptor subtypes to the mammalian biological clock. Proc. Natl Acad. Sci. USA 118, e2024500118 (2021).
Google Scholar
Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).
Google Scholar
Ecker, J. L. et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49–60 (2010).
Google Scholar
Beier, C., Zhang, Z., Yurgel, M. & Hattar, S. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J. Comp. Neurol. 529, 1863–1875 (2021).
Google Scholar
Duy, P. Q. et al. Light has diverse spatiotemporal molecular changes in the mouse suprachiasmatic nucleus. J. Biol. Rhythms 35, 576–587 (2020).
Google Scholar
Engelund, A., Fahrenkrug, J., Harrison, A. & Hannibal, J. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res. 340, 243–255 (2010).
Google Scholar
Keenan, W. T. et al. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 5, e15392 (2016).
Google Scholar
Harrington, M. E. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci. Biobehav. Rev. 21, 705–727 (1997).
Google Scholar
Card, J. P. & Moore, R. Y. Organization of lateral geniculate-hypothalamic connections in the rat. J. Comp. Neurol. 284, 135–147 (1989).
Google Scholar
Monavarfeshani, A., Sabbagh, U. & Fox, M. A. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34, E012 (2017).
Google Scholar
Sabbah, S. et al. Intrinsically photosensitive retinal ganglion cells evade temporal filtering to encode environmental light intensity. Preprint at bioRxiv https://doi.org/10.1101/2022.04.09.487733 (2022).
Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).
Google Scholar
Behrens, C., Schubert, T., Haverkamp, S., Euler, T. & Berens, P. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5, e20041 (2016).
Google Scholar
Nadal-Nicolás, F. M. et al. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9, e56840 (2020).
Google Scholar
Iyer, R., Wang, T. A. & Gillette, M. U. Circadian gating of neuronal functionality: a basis for iterative metaplasticity. Front. Syst. Neurosci. 8, 164 (2014).
Google Scholar
Yan, L., Smale, L. & Nunez, A. A. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur. J. Neurosci. 51, 551–566 (2020).
Google Scholar
Raper, J. et al. Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem. Neurosci. 8, 1570–1576 (2017).
Google Scholar
Lindberg, P. T. et al. Pituitary adenylate cyclase-activating peptide (PACAP)-glutamate co-transmission drives circadian phase-advancing responses to intrinsically photosensitive retinal ganglion cell projections by suprachiasmatic nucleus. Front. Neurosci. 13, 484713 (2019).
Google Scholar
Blume, C., Garbazza, C. & Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie 23, 147 (2019).
Google Scholar
Jewett, M. E. et al. Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am. J. Physiol. 273, R1800–R1809 (1997).
Google Scholar
Revell, V. L., Molina, T. A. & Eastman, C. I. Human phase response curve to intermittent blue light using a commercially available device. J. Physiol. 590, 4859–4868 (2012).
Google Scholar
Mure, L. S. Intrinsically photosensitive retinal ganglion cells of the human retina. Front. Neurol. 12, 636330 (2021).
Google Scholar
Ross, R. A. et al. PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. eLife 7, e35960 (2018).
Google Scholar
van Norren, D. & Gorgels, T. G. The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data. Photochem. Photobiol. 87, 747–753 (2011).
Google Scholar
Henriksson, J. T., Bergmanson, J. P. & Walsh, J. E. Ultraviolet radiation transmittance of the mouse eye and its individual media components. Exp. Eye Res. 90, 382–387 (2010).
Google Scholar
Jeon, C.-J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).
Google Scholar
Govardovskii, V. I., Calvert, P. D. & Arshavsky, V. Y. Photoreceptor light adaptation: untangling desensitization and sensitization. J. Gen. Physiol. 116, 791–794 (2000).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Nath, A., Grimes, W. N. & Diamond, J. S. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep. 42, 113390 (2023).
Google Scholar
Franke, K. et al. An arbitrary-spectrum spatial visual stimulator for vision research. eLife 8, e48779 (2019).
Google Scholar
تنويه من موقعنا
تم جلب هذا المحتوى بشكل آلي من المصدر:
yalebnan.org
بتاريخ: 2026-01-08 11:04:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

